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Summary

-y

This paper addresses the problem of estimation of the parameters
of the Poisson sum of Gaussian random variables imbedded in a background
of Gaussian noise when only realizations of the sum are observable.
Cumulant matching, maximum likelihood, and an empirically orthogonalized
characteristic function procedures are considered. The characteristic
function and the maximum likelihood procedures produce similar results
in a simulation study. towever, the characteristic function procedure
is computationally superior. Conditions under which all procedures are
incapable of parameter estimation are discussed.
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1. Introduction

Let the random variable ZO have a normal distribution with zero

s 2
mean and variance cl;

are identically normally distributed with means u and variances og. The

denote by 21,22,..., a sequence of variates which

Zj, j=0,1,2,..., are taken to be independent of one another and also of
the discrete random variable N, which has a Poisson distribution with
parameter A. The problem of concern in this paper will be the estimation

2 2 . .
of the parameters 8 = (u,k,cl,o;)' when only realizations of the sum

N
X =2, + sz (1.1)

are observable.

The topic will be motivated in this section by a brief account of
a certain security price model proposed by Press (1367;1968) which leads
to the estimation problem at hand. Models of this type occur frequently
in communications engineering and can also be categorized as being of
+*he cumulative damage or asset flow tyde, so that it is likely to De of
interest in a wide variety of possible aprlications.

The fundamental assumptions of the srice fluctuation model
advocated by Press may be summarized by supcosing that the net increase
or decrease in value of a security over a given time interval may be
represented as a random sum of independent price changes superimposed on
an independent process of background noise. Each price change is triggered
by the arrival of some "information event,'" which occurs from time to time
in accordance with a Poisson process N(t) having parameter A. The logged

price of the security (which should be ad3justed to compensate for stock




splits, divided payments, and so forth) at some time t can then be

characterized by the equation

N(t)
P(t) = P_+ ) Z + Y(t), t20, (1.2)
o L %k

where Po is the initial log-price at the base time t=0, tre Zk are inde-

pendent random variables representing price changes due to the occurrence
of information events, and Y(t) is the background noise process, Y(0)=0.
Press takes the Zk to be normal with mean u and variance cg

. . . 2 .
that Y(t) is a Wiener process with parameter oy SO that Y(t) has station-

and supposes

ary and independent increments, and for any t>0 Y(t) has a normal distri-
bution with zero mean and variance oit. The processes N(t) and Y(t) are
assumed to be independent of one ancther and of the Zy - P(t) represents
the log-price of the security rather than the price itself primarily to
account for the empirically justifiable belief that the variation of price
change should be positively related to the magnitude of a security's value.
Security price data are typically compiled at regular time

intervals, whose length may be taken to be one unit without loss of gen-
erality. Then, letting Xt, t=1,2,..., represent the change in log-price

of the security in the interval (t-1,t], it follows by differencing equation

(1.2) that
N%t)
X, = Zx *t 2 t21,2,..., (1.3)
£ okeN(e-1)+1 O0F
where ZO e C Y(t) - Y(t-1), and so is normally distributed with mean zero
b}

. 2 . .
and variance 01. Note also that the number of terms in the summation of

equation (1.3) is N(t) - N(t-1), which is therefore Poisson distributed with

parameter AAt = A, Thus Xt is distrituted exactly as the random variable

L_—A‘—L‘a_“ S S SN S e SWREEN




X of equation (1.1). Furthermore, the log-price changes Xt and xt, are
independent for t#t' since the processes Y(t) and N(t) have independent
increments and the random variables 21,22,...., have been assumed indepen-
dent. If a realization of the process P(t), 0<t<n is available, then the
problem of estimating its parameters Q = (u,k,oi,cg)' may therefore be
reduced to the problem of estimating the parameters of the distribution
associated with the variate X of (1.1), based on the random sample Xl,Xz,...,Xn.
Empirical investigations of Fama (1965) indicate that the distri-
bution of log-price changes should possess thicker tails and be more peaked
about some measure of central tendency than would be permitted by a Gaussian
distribution. Press' compound events model, represented by equations (1.2)
and (1.3), can be shown to possess these properties (Press, 1968). It is

also in general skewed, a property which some empirical evidence suggests

may be appropriate (Fielitz and Smith, 1972; Leitch and Paulson, 1975).

2. Estimation by Cumulant Matching

3y a conditioning argument, it is easy to show that the distribution

function associated with the random variable X of (1.1) is

a0 :
F(x,8) = e ] 3—,@ =), (2.1)
b (]
where
X 2
3(x) = —i—J et /2 ar
/zn

is the distribution function of a standard normal deviate; the corresponding

V> U e ittt - s




density is

exp ‘ (x-gu) l

- = g 2(0 1+a9, )
£(x;8) = S— ] -2—, (2.2)
/21 q=0 (ci + qo )
the corresponding characteristic function is
. .22
29 iuu-tu”o,
¢(u38) = exp{- ¥ u“ocl + A(e - 1)}, (2.23)

1
The cumulants of the distribution may be found by developing the
cumulant generating function log ¢(u;8) in powers of u. We shall require

the first four of these:

Kl = Ap
€y = ci + k(u2 + og)
’ A (2.4)
Ky = Ap(u® + 305)
b 2.2 4
<, = A(u" + 6u o5 * 302)
Let xl,xz,...,xn be a random sample drawn from (2.1). Generally there

will be no need to explicitly consider the underlying process P(t) of
equation (1.2) which may have generated the sample.

Since the density £(x;8) of (2.2) has no simple closed form, it
can be seen that the method of maximum likelihood may not provide a
computationally attractive solution to the problem of estimation of

(u,k,oz,og). For this reason and because of the simplicity of (2.4),

1

Press (1967;1968) has suggested a cumulant matching crocedure.
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et x., j=1,2,3,4, represent the first four cumulants of the

L

p
sample {xl,xz,...,xn}. These are related to the sample mean X and the
1 ¢ .
central moments m = = Z (X.-%)Y by
v n 521

<, =m -3m2. (2.5)

Equating the sample cumulants to the respective population cumulants
given in equation (2.4) yields a system of four equations in the four

unknown parameters. After some reduction the system may be written as

22 : 22
L 3 3 T4
b= (=) T () wu- (—330 =0
1 1 2%
1
A= Ql/u (2.8)
2 Ry Ry
O’ =
2 321
<
2 . 1,2 2
Iy = Ky (u Y (u” o+ 02).
. . s~ v =2 <2, . s
Cumulant matching estimates 8 = (u_,X _,0, ,0, )' may then be defined by
~n n’"n’’in’ " 2n

recuiring that they satisfy the system of equation (2.£). The guartic
equation has, of course, four roots, real or comciex; In every case to which
this procedure has been applied, it has been found that exactly two of

these are real, and are of oprosite sign. The rcot tc which in should be

equated is then that real root which causes the iIntensity rCarameter esti-

>

-+

mate An = = to be positive; that is 21 and Dn should e of similar sign.
n

The sample cumulants <, are, apart from K., not unbiased esti-
4

Fl

mators of the corresponding population cumulants, although they are of

course consistent. They have therefore been replaced in (2.6) by the




first four of Fisher's k-statistics, which are unbiased (Kendall and
Stuart, I, 13969, p. 281).

The most attractive feature of cumulant matching is its ease of
application; one has only to compute the first four cumulants (or k-statis-
tics) of the sample and then solve a quartic equation to obtain estimates
which have the desirable properties of consistency and asymptotic normality.
Unfortunately, such estimators appear to possess rather low efficiencies.

In an analysis of the price fluctuations of ten securities used in computiné
the Dow Jones Industrial average, Fress (1967) found that the use of the
cumulant matching method led to infeasible estimates (with either 52 or

1

Bg negative) in every case. After the infeasible parameter estimate was
set equal to zero, he furthermore found that the distribution function
computed by substitution of the estimated parameter values into equation
(2.1) gave a visibly rcoor fit when graphically compared to the empirical
distribution function associated with the sample Xl’xz""’xn' These
estimates were based on sample sizes ranging from 185 to 439, and Fress
concluded that much larger sample sizes are recuired to achieve reasonable
estimates by cumulant matching. This is ccnsisten® with the simulation
results tc be subsequently presented which indicate that fcr samples of
size 500, cumulant matching is totally inadequate, at least in those

portions of the parameter space that were considered.




3, Characteristic Function Estimaters

Because the characteristic function ¢(u,9) associated with the
modified compound Poisson distribution has a reasonably simple fcrm,
it was believed that a method of parameter estimation based on character-
istic functions might provide estimators for the parameter vector
2 2y, el cer s . o
g = (u,A,dﬂ,oz) with reasonable efficiency and computational tractability.

Estimates for the true rarameter wvectcr 2, can be cobtained by numerically

Q
determining the zeros cf
n ma(.a) “
S . =2 Re Z —2—345— ($(u:8) - expiux,)®|p(#(u;9))|° du =0 (3.1a)
nd 121 36 = ] -

- 2 - . - .y s
for 8 =u,A,0i,02 and some function w(+). Clearly E(Sqa) = 0 under mild
regularity ccnditions and we can expect that the M-estimators derived from

this system or its discrete counterpart,

; n 2 3p(u_32) )
S =2fe ) X — =" (#(u_39) - expiu x )%[p(e(u_33)[° = 0 (3.1b)
ng .= b 38 ol 1 3 ol
=1 g=1 : :
- _ 2 2 caq s . .
for some p and 9 = A,u,ol,c2, will De consisTtent and asymprtotically normal

(Thornton and Paulson, 1377). An agpealing feature o7 (3.1) Is =hat <he
weight Zuncticn adapts Itself to the data unier <he cturview cf *he assumed
model, in this case the modified compcund Poisson Zistritution. Apart
from the weighting, equations (2.1) are very similar in Zorm to the

normal equations of nonlinear least sguares

(exzected - observed) = O,

Y
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for parameter 9. The observed terms are replaced by expiux, and the

expected terms are replaced by ¢(u;8). It thus makes sense to choose

~he weights w(¢(uq;g)) in inverse preoportion to the standard deviations

e

of the {Q(uq;g) - expiu
are not uncorrelated.
use of this correlation and we shall

I+t will be more convenient %o

v(u38) =

and its sample estimate

expiux, = n

. Clearly Z(»_(u))
n

(u) is given by

C—
"

A cov(F _(u),7 (v))
n n

i

-

= Ze p(u-v;8) +

, dnbpubliished Fh.Cl.

xj}. However, the residuals {¢(u

mop(urv;8) - [Re 3(u3g) +

;8) - ex;iucx%}

Ke)

It will therefore cften be advantageous to make

do so presently.

work with the quantity

+ Im ¢(u38), (2.2)

Im 3 (u) (3.3)
n

n

] (cos ux, + 1 sin ux.), (3.4)

j:l J 3]

= 3(u3;9) and hence E(Qv(u)) = y(u)

Is easy tc show that the ccovariance kernel of the real

Imortu3) Fe o(vig)

Imos(vis)) (3.5)
dissertaticn, Fanssalaer Folyvechnic

Institute, 1377.) The residuals yﬁ(u) - v(u433) have covariance xernel

n—l “(a,v). Cefine
7o = 700y 7 Guy)y ey ()T (3.8)
and
£08) = (a3, v(a,8), el (a3 (3.7)
e . A_“_‘ Y P . P - -.}A




where u,, u have been chosen so that the matrix K is positive

20 =eeo Yo
definite. It is always possible to choose such Ups Ugs eens Up since the
covariance function K(u,v) is positive definite (Feller 1968, Ch. XIX).
The px1 random vector z(8) = K—E(Qn - y(8)) has covariance matrix I.

The estimation § may be effected through consideration of the objective

function
~ - o -t ' -1 5 - =
2(e) = (yn {(?)) K (Yn Y(?))

y - ; - aq’
qgl qﬁi (yn(uq) y(uq,Q))(yn(uq,) y(uq,,@))k (3.8)

1] -
where the k3% » 95 9'51,2,...,p, are elements of the inverse matrix K !
Since (}q - y(8)) is asymptotically p-dimensional Gaussian, C(8)

is asymptotically x2 on p degrees of freedom. Accordingly, estimation of

2

5 by way of Q(8) is approximately a x2 ninimum

2
<he rfarameters u,x,ol,o
crocedure and can be expected to be quite efficient. In fact, this has
been independently and recently shown by Feurverger and Mclunnough (1981).
The function 2(8) depends on the unknown value 9 of the parameters vector
through the matrix K. Estimation could still be effected by regarding
X as a function of the minimizing variable 8 but such a procedure would
require an inversion of the matrix at each iteration ¢f the minimizing
algorithm and so would lead to computational expense. An alternative to
direct minimization of the x2 - like statistic is tco proceed in stages
via a modified x2 minimum procedure where the matrix X is held constant
during the differentiation sta2ze and allowed to Le variable thereafter.

Instead, we use the fact tha+ the vector y_ 1s the mean of the independent
Yn P

and identically distribuved rindom vectors s,, j=1,2,...,n, whose elements

v

are




- |

~~— ‘v ~

-10-

. = cos(u X.,) + sin(u X.), 21,2,.. .,
S5q ° coslughy) Q"3 W P

where Xl,Xz,...,Xn is the sample drawn from the population whose cara-
meters are to be estimated. The matrix K in (3.8) may be replaced by
the sample covariance matrix Rn with the general element

n
1 T
=== él {s,

Jq-yn(uq)}{sjq,—yn(uq)}.

kogr.
qq ' ;n s
Thus the characteristic function estimates én may be generated by minimizing
over 8 the sum

0 (8) = If E (5 (u)=y(u 85 (u_)-y(u_,,8))k3Y (3.9)
R R L TEA RIS AU AR U '

"
4

where the ﬁiq' are elements of g; After such estimates are obtained,
they may be refined by using equation (3.5), evaluated at the estimated
parameter values, to re-approximate the covariance matrix K; then a
second minimization step may be performed.

The algorithm ocutlined In the preceding paragraph has been applied
to simulated data having the modified compound Poisscn Zistribution *hrough
the use of a simplex minimization preccedure (Jacerv, =owalik and Fizzo, 1972,

ané 5., were

p. 79) applied to equation (3.3), where the wvariacles \, ci ;
replaced by their logarithms to result in an unconstrained >roblem. Ziscus-
sion of the performance of the estimation procedure will Se deferred until

after likelihood is discussed. A total of p=u40 points uq were used, twenty
placed symmetrically on either side of the origir.; the effect of their

placement was not extensively studied, but did net actear to be too crit-

ical, so long as several toints were always included near the origin. Since




.
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¢(—3—,6), where «, is the variance of the distribution given by (2.2), cor-
"2
responds to random variables with unit scale, it seems reasonable to use

the quanity —l—, where 22 is the sample variance, as a unit of measurement

K
2
in determining the placement of the uq. As a rule of thumb, placing the
. . . 1 . 3
twO DOlnts closest to the origin at * and then gradually increasing the
HV(z

interval between consecutive toints as ‘ul*@ appears to work reasonably well.
Tigure 1 provides an indication of the agreement of the sample transform
?n(u) with the theoretical transform y(u) for a sample of size 500. We
thus expect to do reasonably well in estimating the parameters from the
data with p=&0.

n retrospect, it is believed that p could probably have been
chosen to te somewhat less than 40 without seriously degrading the

resultant estimators. If, however, the value p=40 is used in equation

(2.3), it w

pae

il be found that the sample covariance matrix gn will be

suite illconditioned. Its inversion may therefore sometimes prove to be
numerically troublescome. A moderate (5 to 10 percent) inflation of its
diagonal elements will alleviate this difficulty, and seems to have no
harmful effect on the estimates.

here are theoretical difficulties associatred with the Fact that
the function on(g) of equation (3.3) measures the deviation of the empirical
function 9n(u) from the theoretical function y(u,3) at only a finite
number of points. Although y(u,@) corresponds unijuely to the character-
istic function ¢(u,8) and so uniquely determines the distribution function
F(x,g) of equation (2.1) it mav happen that two distinct feasible para-

meter vectors 6, and 8, satisfy y(u ,9.,) = y(u ,98.) at each of the points
=1 <2 g1 q -2
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H ul,u2,...,up even though this cannot be the case identically in u. This

is clearly undesirable since it implies that the estimation procedure is

incapable of differentiating between samples drawn from the distinct dis-
tributions F(x;?l) and F(x;§2). Fortunately, from a practical point of

view this phenomenon causes no difficulty as long.as up»u ,uP are not

preee
too widely spaced, because then the vectors 91 and 92 must be greatly
separated in the parameter space.

In order to make this last statement more precise, consider as
a simple example the use of just six points located on the u-axis at * e,
+ 2¢ and * 3¢, where ¢>0. Then by straightforward algebra it can be shown
that the six values y(u,@), u=*¢€, 2, * 3e, uniquely determine the
four elements of the parameter vector 8 = (u,A,ci,cg)' if 8 is Further
assumed to lie in the reduced parameter space Og = {§[Iu| < 23 A|u|<é%,

A,ci,o§>0}. To continue with this example, suppose the grid size ¢ is

. BB i

l chosen equal to , which is the position of the smallest positive point

Lv'e
2

according to the previously mentioned rule of thumb, and suppose further

that the sample variance k. estimates x, essentially without error. Then,

2 2
. _ 2 — ‘. .
#* letting 90 = (uo,ko,olo,czo) denote the true values of +he parameters,
|
tua L g | N
/,3 : 2 - 2 5/1__ (3.10)
K YK 2 2.2 A
2 2 J/clo+xo(uo+czo) 0
and
Tug I
-9 0. o (3.11)
e,
2
Thus 8 will lie in Op as long as Ao is in the interval

bt e dtttorin . - S R e




2
Ay € 12, 187 ) I (0.006, 17.54) (3.12)

16w 3

since then, from equations (3.10) and (3.11)

Ve,
2 b n
!uo, < < :;’
Ay (k)
Y~ s - T
1u0|xo < /Kz Y i, § — = 3e °

07 (3D

For AO in the interval (3.12), the fact that the values of y(u,6)

at the six points u=te, *2e, *3e completely specify § within @, allows

R
one to construct a proof of the strong consistency of the estimates obtained
by minimizing On(g) of equation (3.3) over any compact subset of GR
containing the true parameter vector. The proof is totally analogous to
that given by Bryant and Paulson (1879). If, on the other hand, xo does

not lie in the interval (3.12) effective simultaneous estimation of all

.
four parameters is a practical impossibility no matter what method may be
used. The reasons for this phenomenon, which have to do with the insen-
sitivity of the distribution function F(x;Q) to its parameters for extreme
values of A, will be subsequently discussed.

The simple example of the preceding raragrachs is not meant to
imply that only six u-values should be used in the computation of the
objective function On(g), cr even that ul,uz,...,up should be necessarily
equally spaced. Rather, it is intended to at least partially 3justify the
empirical observation that, even though the measurement of the deviation
between the functions §n(u) and y(u;8) at only a finite number of points

poses theoretical difficulties, these should not disqualify the proposed

estimation procedure from practical consideratioen.

————_M SNEPSUS VN amn. it B, ...
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4, Maximum Likelihood cstimators

The probability density function of the modified compound Poisson

distribution is given in equation (2.2) and may be expressed as

£(x) = ] p £ (x)
=0 &4
where
o * e~ A &/qt
and
1 - (x-qu)°
f(x)= 3 3 %exp —2—9-—2—.
4 (2W(01+q02)) 2(01+q02)

In these equations the dependence of f(x), p_ and fq(x) on the parameters
M

has been suppressed for later convenience. A system of maximum likélihood

equations can be formed by differentiating the log-likelihood function

2 2 °
Lu,x,00,05) = ] log S(X.)

-

-~

. 2 . . .
with respect to the parameters u, A, ol, o:, and sexting Tthe resulting
<

expressions equal to zero. This gives

3P,

a—Ii: 1 o N - e . - .
du % f(Xj) g 52 ragl (xj qu) ‘q('f) ] (4.1a)
1772
oL _ 1 1 . o |
B—A-Tgf(x:)Z‘-pq‘(X) n=0 (4.1b)
27 g

-—-_-&.‘_..—44‘..___.» P — it a— . o ST
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P 2. 2 .
L <% ] f()l( ) —i— {(Xj-qu)2 - (0y+305)} £(X,) = 0 («.1c)
K : c‘+ ks -
3 01 4 ] q( 1 qcz)
' op
2 2 2
L _-yy ) — {(X.-qu)? - (cZeqed)} £ (X, = 2. (4.12)
: ’(Y ) 2 2 3 1 2 g 7
y 3 ¢ j q (0;+q03)
Explicit solution of these equations is, ¢f couirse, imneossible;
however, it has been cossible to express them in a form amenable "o a
fixed-point solution. It is ccnvenient for this turpose <o replace the
2
parameter o, by
<
!
Y = 3
72
’ . m n) 2(m) (m) )
, Then if u( ), \( s 07( ard y represent the values of the estimates
at the mth iteration of the fixed ctcint algerithm, <he eguatiens (u.?)
i may be manipulated to suzgzes+t the follcowing upiating orocedure:
’ (1) X, ap £ (X.) . Pl
m+ e _ b 73 ol e - T o RN ~
= = — } s AN L*..’.a.)
u Z £(X,) Z (yt+g) % KL = (ye) T :) ¢
- P Li - -
oet 1 . . ) .
k( V. L } = L 3 zp T (X,) (L.22)
n & S(X,) = “HpTg U
] 19
2 2
P Ame1) | 1 X £ 2 : s
! = = () — i T (X)) - ) - 5 A S (%)) (u.2
92 n {% £(X.) z (y+2) ' f) . T S0, = (ye) ‘;(“f)‘ (u.2¢)
' p DR B
PR W S P S ———
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(m+1) -
2 ’:::
X pf (X,) X, qp = 7
Y{g X)Z—i—q—;—-zu Z;(;”Z ‘12r'(x.)+u2 Zﬁ—)z 5 £ (%)}
YT Sly+q) 3777 Aly+q) 37777 Uyee) CT
5 . p.f (X,)
R I el JE e W (.22)
27 £(X,) 2 (v+g)
Pl -

where the right hand side of (4.2) is evaluated at the mth values of <he
carameters.

There are an almest unlinmited numter of ways to *transform the
equations (4.1) into a rorm suitable for a fixed point procedure; the
form of these eguaticns Is par+ially motivated by heuristic considerations.
It has nct been possible to prove that this fixed-point scheme must can-
verge or yield unique solutions but the algorithm has consistently yielded
reasonable parameter estimates when applied to simulated data.

(m) y(m o 2(m) (=)

The convergence of the Iiterates yu ' > Oy and v of system

<

(4.2) is unfortunately extremely slow, so that some sort of acceleration

Leox . . . . . s 2
modification is a practical necessity. An adaption c¢f the Aitken & process
(Hildebrand, 1974, pp. 567-71) has proven effective. A Zetalled description
is given in Bryant (unpublished Ph.2. Thesis, Rensselaer Folytechnic
Institute, 1977).

The major disadvantage cf using the fixed-point algorithm to

obtain maximum likelihcod estimates for the parameters of the modifiec

compound Poisson process is <he Inordinate amount > computer time

required. For samples of size =27 the maximum ‘ikelihood crocedure took




from two to six times as long as the characteristic function procedure,
depending on the values of the parameters chosen (the amount of time
required increased rapidly with A). Furthermore, the time required by
the maximum likelihood method increased with increasing sample size, so
~hat for very large data sets its use may not be considered economically
feasible. This is not the case with the characteristic function method,
as the time it requires is primarily a function of p. As previously
stated, the value of p used in the estimations reported here was 40,
which was quite probably excessive; thus it might be possible to reduce
the amount of computer time required by this procedure without loss in

the accuracy of estimation.

5. Empirical Comparisons

Istimates of the parameters of simulated rodifled compound Folisson
samples of size 500 are tabulated In Table 1, and may te used to at
least partially evaluate the relative ldesirability of <he cumulant matching,

zharacteristic function and maximum likellinood estimatlicn crocedures. In

1]
(o9

view of the considerable amount of ccmputer time reguired by <he character-

istic func=ion and maximum likelihood algorithms, the nurber of Zdifferent
combinations of parameter values Investizated was necessarily rather small;
in all, the results of 25 simulated samples are contained in +he table.
These data clearly indicate +hat cumulant matching estimates are
noticeably less efficient <hi3n <hcose provided 5y +<he other two procedures.

In fact, in the majority cf cases it was found that the cumulant matching
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method gave infeasible solutions in which one or both of the estimates of
the variance parameters Ji and og were negative. This is consistent with
the results obtained by Press in his attempt to fit security price data with
the modified compound Poisson distribution through use of this methed of
parameter estimation.

The characteristic function estimates and those obtained by
maximum likelihood are highly correlated, and for most of the 25
samples in Table 1 yield solutions of nearly equal quality. Their
comparisen is made more difficult by the apparent fact that for some of
the combinations of parameters considered (notably whenever u=0 and A21),
sample sizes considerably larger than 500 are required for truly effective
estimation by any means. Accordingly, it would have been desirable to
simulate larger samples with which to compare these procedures. This,
however, was dZetermined to be inadvisable due to the excessive amount of
computer time It would have regquired. Instead, the parameters of some
of the distributions were re-estimated using the same Jata as that upon
which Table 1 1s based, where in addition i1t was assumed +that the ratio
of the variance parameters ci and cg was known. This additicnal infor-
mation increases the precision of estimation of both orocedures, and also
substantially reduces the length of time required ty either algorithn.
The resulting estimates are recorded in Table 2, along with those
calculated from several samgles of size 500 not -ncluded in the first data
set. Conclusions similar to those drawn on the basis of Table 1 are

supported by these data. Again, characteristic function and maximum likeli-

hood estimators appear to Jo about equally well (an exception occurs in

- e e e ot . oW waetliln A
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TABLE 1

Comparison of Cumulant Matching (CM), Characteristic Tunction (IF)

and Maximum Likelihood (MLE) Estimates of the Paramerters

Parameters
M
CF

MLE

Parameters
cM
3

MLE

farameters
oy
CcT

gur o
MLz

Parameters
|

Parareters
Sy
~r

Mt
Ry

Parameters
CY
CF
MLE

Paramecters
cHh
cF
MLE
Parameters
cY

cr
MLE

¥ A
[ L
5.145 0,103

3.312
3.863

N

.233 0
.395 0.
L4290

[

w

.488 1.1
.356 2.3
.11 0.2

£ W

~1 o
O W -4
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e . .
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Table 1 continued

i by 02 02 u } a2
o : 2 !
Parameters 2 ! Yy 1 : : Y
CM 2.977 0.601 -0.134 -1.211 1.339 2.74u  2,3e8
CF 1.363 72.362 0.247 1.00u 1.:231 2.330 0.2%8%
MLE 1.862 02.3%61 2.2ul 2J.352 1.174  2.%u1 0.286
Farameters 2 : L2 N 4 2 Y
cM -0.001 78.725 12.872 -0.1ius 4,443 1,726 -0.uts
or -3.185 1.439 7,480 1.33 3,388 1,332 9,125
ML= -0.,134 92,387 2,830 2.011 3,393 1.337 9.131
Parameters 2 2 ¥ L i 2 %
ok | 2.454 1,721 -2.3%38 2.020 2.012 1.212 0.360
cr 1.873 2.437 2.237 1.1s54 2,389 2.178 90.3u2
. MLEZ 1.83u 2,278 2.112 2.833 0.%31 2.199 0.318
Parameters o 2 * !
CM =2,114 2,423 1,317 2.285
tT -Q.CL0  1.347 2,322 1.335
MLZ -0.0u6 1,287 0.3u47 1.384

-
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che case where u=&, A=4, 0,70, = 1), and even when the varlance carateters
are assumed equal, effective estimation is not cossible by

w“hen u=0, A=2, 3?=c§ = 1.

-

The inability to estimate accuriately when L=0 zand 2

hoth Tables 1 and 2 has been rfurther substantiated evsirizalls ani may

e exclained Lv noting that the Zistributicn functizn T(x;#

(2.2) Is rnearly singular in =his regicn when rezarie? as a Sunctizn oF i=3
) g £ =
]
Tarareters. 3y thls Is meant <hat the 2istributicn Is strongly Zependens

Teonl Tol33cn Tamllv whose Tararetars savwissy

T, 0T cTL R o« tTel)
where « . 15 The fopulaticon variance. IyTretri:z
TirazTeters _l12 near the nvlersurfacze (I.1) mav Theraiire te cirmoalle
ImilsTingLlisnalle aven Though thelr Carametays ZliTar wilslv.,  Tov o examIla,
in the case cf Tatle 1 where the *rue taramerter wvil.ues are u=0, =],

a curve wnich is nearly symmetric and which has alrost <he

variance as Zces the underlving population, as can Le verified v -he use

-y

. D .
hese rit+el distribut

boe

one another or from the farent iistribution, and vet the corresconding

=1, each ¢ =he three estiration methods fits =he Zata with

ons Jo not differ gzreatly from

same Tean and
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estimates for the parameters A, oi and cg are quite inaccurate.

The singularity of the modified compound Poisson distributicn
with pu=0 is especially critical when A is either large or else extremely
small, for reasons which will be discussed shortly. If one is interested
only in fitting a curve to data, then these considerations may not be of
great concern. The precise estimation of the values of the individual

2 2 .
parameters 1A, o. and o. when u is very close to zero, would, however, seem

1 2

to require impractically large samples unless A is of moderate magnitude.

Other interrelations among the parameters also exist and may cause
difficulty in estimation. In some portions of the parameter space, for

example, F(x;0) is quite insensitive to perturbations of the parameters on

the surface

Au = Kl

where Ky is the population mean, and this in turn causes the estimators
of X and u to be generally strongly negatively correlated, as is evident
in both Tables 1 and 2. Other such relations are not so obvious. In

an effort to gain some insight into these interrelations, and the effect
they have on estimation, information matrices have been cormputed and are
given in Bryant and Paulson (1981).

The information matrices reveal a very complicated pattern of
interrelations among the parameters u, A, oi and og. No attempt will
be made here to discuss these in complete detail, but rather only two
observations, which will be of use in Section 6, will be noted. It may

be seen that as ) increases, F(x;8) becomes nearly singular, which may

be accounted for by the limiting normality of the standardized variate




Y

MA‘_JA

Q=

X - Ay

v 02 + X(02+02)

1 2

. 2 . . . . .
as A»» while y, oi and 9, are kept fixed. The practical implizatien of
this is that if X is much larger than the values Investigated in Table 1
. . . . - : c .2 2, 2
only parametric combinations which are functions of My and o, + M(u +02)
may be accurately estimated without recourse to tremendously large samples.

Conversely, if X is very small the distributicon is insensitive to the
¥

2
parameters u and ¢

,» Since then the ''noise'" variate Z_ of equation (1.1) is
2 q

Z5
dominant. Finally, these matrices indicate that the magnitude of the
. 2 . . - . . qs

variance o, of ZO is a majer factor in the overall estimability of the
. \ 2 . 2

parameters. As seems reasonable, & small value of o, relative to 95

permits more precise estimation than would be possible if this were not

the case.

6. Ulesigned Estimation Experirents

Suppose it is of interest to estimate the parameters 9 = (u,x,cf,og)'
of (1.2). If P(t) can be continuously and creclsel, chserved, the arrival
times of the Poisson process may be recorded alon:z wizh the corresponding
jumps of P(t), so that N(t), Y(t) and the Zk are stservable. In this case,
estimation of the vector 8 is straightforward. GHcwever, it is no< difficult
to think of applications where ccntinuous obser.aticn is either not rhys-
ically possible or else is not economically feasible, and vet the experi-

menter does possess some control over the times at which the process of

equation (1.2) may be observed.
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Suppose it has been decided that a fixed number n of observations
of the process P(t) are to be used for purposes of estimation, and for
simplicity it is agreed that a constant inter-observation time At will be
employed. Then it is in the experimenter's interest to determine a value
of At which will lead to parameter estimates of low variability. It should
not be surprising to find that different choices will lead to estimates of
varying quality, but the degree to which this is true turns out to be
remarkable. If reasonable initial estimates of the true parameters are
available, they may be used (in a manner to be described) to great advantage
in the problem of selecting an appropriate inter-observation time.

Given some fixed At, the values P(At), p(24t),...,P(nAt) yield

by differencing the random sample

X, = p(iat) - P((3-1)at), i=1,2,...,n,

4

where P(O)=PO. These Xi have as their common distribution F(x; ), the

4

Yot

modified comround Poisson distribution with the parameter vector

- 2 2
Sar T (oo Apes Tppe0 9305
2 2 - - . .
Where ) = AAt and o, = g, At. The problem of estimating the parameters
At 1At 1

f of the stochastic process is then reduced to that cf estimating @At; ig
any of the procedures discussed in Sections 2-u4 is used to obtain the

estimates

A . s . 2
9 T (o Aaps Tipes 0305

then the vector of process carameters is likewise estimated by

tD >
1}
—_
A=
-
>
-
Q»

2 A2
1’ 02)$
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s s "2 2
where A = AAt/At and oy = olAt/At.

It was seen in Section 5 that the character of F(x;QAt) with
regard to the estimability of its parameters is strongly influenced by

the magnitudes of AAt and 02

1AL These quantities may be controlled by

the experimenter with proper selection of the inter-observation time At,

which in turn will permit accurate estimation. In fact, if this is not

done, the near singularity of the information matrices over much of the

parameter space makes it clear that accurate estimation may not be possilble.
Let 5 be a vector of prior estimates of the process parameters,

and let §At be the corresponding initial estimates of QAt' If it is

assumed momentarily that the estimates §At have a covariance matrix not

too dissimilar to % I(@At)-1 where the jk element of I(8) is given by

3 log f(x;QAt) 3 log f(x;gAt)
L]

? (6.1)
9 a3 Atk

Ijk(QAt) = E
then these information matrices may be used in conjunction with the
initial estimates to approximate, for any given At, the quantities

. N 2 a2y -2 2
nVar(u), nVar(i) = nvar(X, )/at°, nVar(c:) = nVar(o,, )/At" and

At 1 1At
nVar(ag). An approximation of the generalized variance of § may also
. . . = b,-1
be useful, and is provided by the guantity {[I(e\b)IAt } . 3By calcu-
Yo

lating these numbers for several values of At, it is possible to select
an intercbservation time which permits near-optimal performance in
terms of the overall variability of the estimates of the process parameters.

It should be mentioned here that % I(E )7t may not be a very

At
good approximation for Var(@At) even if maximum likelihood is used to
generate these estimators and the number of cobservations is large, since

the information matrices are typically ill-conditioned so that a very slow

approach to the asymptotic iistribution must be expected. This, however,
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does not invalidate the procedure since the information matrices may still
be regarded as indicators of estimability, at least as long as the prior
vector estimate § is not too inaccurate.

To illustrate the suggested method, suppose that a process P(t)
has true parameter values u=1, A=5/unit time, oi=%/unit time and o§=1 which
are to be estimated based on 500 observations. If the computations indi-
cated above are performed for several values of At (using the true para-
meters as initial estimates) the data of Table 3 will result. There is
a clear indicaticn that an inter-observation time of roughly 0.1 of one
time unit will produce nearly optimal estimates of the process parameters.
On the other hand, if At were to be arbitrarily chosen to be 1.0 (resulting
in an experiment which would run ten times as long, with sampling only
one-tenth as often) effective estimation would be impossible without
dramatically increasing the number of observations.

Four simulated samples of size 500, whose parameters correspond
to inter-observation times of 1.0, 0.2, 0.1 and 0.05 time units, were
generated and their parameters estimated by means of the characteristic
function algorithm. The same stream of random nurbers was used in *the
creation of each of the samples to facilitate the cecmparison of data insofar
as possible. Results are displayed iIn Table 4, and these show that
reasonable estimates are achieved for At in the range from 0.05 to 0.2,
while as predicted the solution cbtained for an inter-observation time of

1.0 is quite inaccurate.

I WD I Vi NG S SN — ——— e
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TABLE 3

Effect of Inter-Cbservation Time

on Parameter Estimation

2. 2.
u=l A=$S cz-O.S 02-1
At ul 02 o2 avar(u) nVar(i, ) nVar(}) nVar(52 ) 1Var(5:) nVar(éz)
At 1At |72 At as’ o 1 2
1.0 || 1] 5 {o.5 |1 || 112.92 282u.7  2824.7 1ubs.3 1uug.3  59.531
0.2 1111 lo.1 |1 | s.0887 6.1373 154.33 1.27232  5.2330  7.7550
0.1 [l 1lo.5 10.05 {1 | s.3150 1.3u2u  13u.2u 0.0182u3  1.8248  23.1237
0.05|] 1]0.25]0.92501 || 5.9380 2.43382 173.53 0.002u257 7.233863 12.353
| 2 2 -1 ; REUPIN"
L TR |01At 02‘ |I(§At)| | (jﬂt). (at)
1
i ) 7 7
1.0 1,5 0.5 11 0.278x10 0.278x1D
0.2 ll1] 1 lo.1 |1 ! 0.115x10° y.716x10"
5.1 || 1]{0.5 [0.05 |1 | 0.573%10° 9.573x10"
0.05]l 1]0.2510.025]1 | 0.72ux10" L 2.116%10°
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TABLE 4

Parameter Estimation - Simulation Ses:les

) u=1 A=5 cEi:O. 0s=1 n=500
)
- . 2 .2 5 X -2 -2
1

y it u ot %18t P ! u 7y 2
1.0 1.646  3.0u2 1.731 o.ooo! 1.546  3.042  1.781  3.400
0.2 0.900  1.0786  9.0895 1.065 || 0.300 5.333  c.uug  1.785
0.1 0.338  0.3282  7.0465 1.Cu7 || 2.938  5.232  0.485  1.9u"
9.05 1.014  0.22u1  3.2252 0.333 ] 1.9ts 4432 9.s0u 9.333

a

]

b

!
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While it is true that At was selected with prior knowledge of
the true parameters in this example, it is also evident that it need not
be chosen with extreme precision in order to gain acceptable results.

! Thus it is believed that this method can be used with success in con-
junction with reasonable initial estimates. A simple, useful rule of
thumb is the following: 1iIf the arrival rate is XA per unit time, then
the sampling rate should be (ZA)"1 per unit time. The use of such a
selection of inter-observation time can lead to much enhanced parameter

estimates.
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